An Exact Solution of the Binary Singular Problem
نویسندگان
چکیده
منابع مشابه
the problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولAn exact solution method for binary equilibrium problems with compensation and the power market uplift problem
We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and inte...
متن کاملThe Exact Condition Number of the Truncated Singular Value Solution of a Linear Ill-Posed Problem
Abstract. The main result in this paper is the investigation of an explicit expression of the condition number of the truncated least squares solution of Ax = b. The result is derived using the notion of the Fréchet derivative together with the product norm ‖[αA, βb]‖F , with α, β > 0, for the data space and the 2-norm for the solution. We also derive a lower and an upper bounds to estimate the...
متن کاملThe Exact Asymptotic Behaviour of the Unique Solution to a Singular Dirichlet Problem
By Karamata regular variation theory, we show the existence and exact asymptotic behaviour of the unique classical solution u∈ C2+α(Ω)∩C(Ω) near the boundary to a singular Dirichlet problem−Δu= g(u)− k(x), u > 0, x ∈Ω, u|∂Ω = 0, whereΩ is a bounded domain with smooth boundary in RN , g ∈ C1((0,∞),(0,∞)), limt→0+(g(ξt)/g(t))= ξ−γ, for each ξ > 0 and some γ > 1; and k ∈ C loc(Ω) for some α∈ (0,1)...
متن کاملExact Solution of the Quadratic Knapsack Problem
The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint, where all coeecients are assumed to be nonnegative and all variables are binary. The problem has applications in location and hydrology, and generalizes the problem of checking whether a graph contains a clique of a given size. We propose an exact branch-and-bound algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2014
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2014/580497